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pi 1. INTRODUCTION

Many of the problems in decision and control theory involve estima-

tion and optimization. Several methods including self-tuning regulators

and model reference adaptive schemes are available for estimating and

controlling systems with unknown parameters [1],[2],[3]. The theory for

the optimization of a single performance index for both deterministic and

stochastic systems with known parameters is well-established [4],[5],[6].

The theory for the identification and control of systems with several

decision makers, each having different information available and each having

his own performance index, is- eh-mozv difficult.471. There are several

conceptual reasons why the classical theories for systems with single cost

functions cannot be easily adjusted to handle multiple cost functions. First,

it may not be possible to optimize the multiple objectives simultaneously.

L
Second, the information available to each user is not necessarily the same.

These problems do not occur for the single objective case.

1.1. Overview of Multi-User Control Theory

The problem of optimizing multiple objective functions has led to

Sthe development of several solution concepts, (8]. A Pareto-optimal solution

is used when there is cooperation among the decision makers. -For systems

in which cooperation cannot be guaranteed, a Nash solution is employed.[9].

Some systems have a structure in which one user is able to enforce his

strategy upon another user. A solution concept for this type of system is

known as a leader-follower or Stackelberg solution.

-- ~~~~~~~~~~~~~~..... ................i, ,.t ., ,., ,_ --. .---........... ,,-...,.... , . -. --...
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The Nash decision strategy arises frequently in systems with

multiple decision makers. An inherent property of the Nash strategy is

that it pravents decision makers from cheating. Any unilateral deviation

by a decision maker from the Nash equilibrium incurs a greater cost for

that decision maker. It is clear that the Nash strategy is a rational

strategy for systems whose users do not cooperate.

The Nash solution concept arises often in economic contexts.

Consider firms competing against each other in a market. Each firm seeks

a production level for optimizing its cost function: profit. The firms do

not cooperate in determining production levels. A Nash strategy may also be

required for many estimation and control problems. In an estimation and

control scheme there may be one performance index, e.g., minimum mean square,

for estimating the parameters and a different index, e.g., quadratic, for

controlling the system. The goals of these performance indices may oppose

each other, and therefore, a Nash solution is required. A Nash game can

even arise in a leader-follower setting. Consider a hierarchical structure

in which there are several followers at the same level in the structure.

The leader imposes his strategy but the followers are permitted to compete

with each other. In this case, the followers are involved in both leader-

follower and Nash games.

1.2. Determining Nash Strategies Under Uncertainties

When the system and cost functions are known to the decision makers,

a Nash solution can be found. An explicit closed-form expression for a
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Nash equilibrium exists for linear systems with quadratic performance indices

[10]. A decision maker having information about the plant and the others'

*objectives can determine both his and the other players' Nash strategies.

Ps However, when either the plant is not known or the cost functions are not

• known to each decision maker, a player cannot determine a priori the Nash

equilibrium. This work investigates how a decision maker can use reaction

relations of the other decision makers for determining Nash equilibrium.

1.3. Organization of Thesis

In Section 2 a linear quadratic game is posed and an equilibrium

i is proposed. In Section 3 it is shown that the proposed equilibrium is

equivalent to a Nash equilibrium. It is proven in Section 4 that algorithms

which are updated based upon the error in the estimated state cannot converge

* to a value different than the Nash equilibrium. In Section 5 an algorithm

using reaction relations of the other decision makers is described. Finally,

an example using the algorithm is given in Section 6.

.2
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2. A PROPOSED EQUILIBRIUM FOR A LINEAR QUADRATIC GAME

In this section a linear quadratic game is introduced and its .'

certainty-equivalent optimal inputs are determined. An equilibrium for the

game is proposed and the defined equilibrium is explicitly calculated.

2.1. Formulation of the Linear Quadratic Game

Consider a linear time-invariant, discrete system described by

Xk+i = A-k + BUI + B2U2k + Wk (2.1)
k 2k k

where X is the n-dimensional state vector at time k, and U and U are

m and m2 dimensional input vectors to be chosen by Decision-Maker 1 (DM1)

and Decision-Maker 2 (DM2) at time k, respective!v. Assume that (A,BI) and

(A,B2) are controllable. Also assume that W, ., an n-dimensional Gaussian

random vector with E{W k 0 and E'Wk W' -P, the (n-n) covariance matrix.

The single-stage cost function associated with D.Mi (i= 1,2) at time k is

Jk. = E{(X+l-iQi(\+l-C.) + U: R U (2.2)
'k k 1. k

where R. is an (miXmi) positive definite matrix, Q. is an (nxn) positive semi-

definite matrix, and C. is ann-dimensional vector. The state XK is available

to each DM at time k. The plant (2.1) is known to each DM. Each DM knows

his cost function parameters, Q, R, and C, but he does not know the other

DM's. It is assumed that each DM plays rationally, that is, he chooses his

input U to minimize his cost (2.2).

"---..
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3 As stated earlier, each DM is attempting to tune his control law to

the reaction relations of the other DM. Since cooperation between the

" DM's cannot be enforced, it is desirable that each DM.tune his control to

reach a Nash equilibrium. The Nash solution to the N-stage linear quadratic

game is given in [101; however, this solution requires the DM's to know each

other's cost function. It is possible that estimates of the cost parameters

could be used in a dynamic programming solution to the N-stage problem, but

the implementation of the estimation schemes may involve calculating condi-

tional probability distributions, which can be difficult. On the contrary,

L" the calculations involved in minimizing the single stage cost function are

quite simple. If the DM's play the single stage game over and over while

updating their control laws appropriately at each stage, and their control

laws converge to the Nash solution, then the goals of the DM's have been met

with relatively simple calculations.

' 2.2. The Certainty Equilvalent Control

-_ Due to the quadratic nature of the cost functions, linear controls

are assumed:
UI =Flx k + Gl (2.3)

k k

U2 F 2k + G2  (2.4)
k k k

where F. (i= 1,2) is an (mien) matrix and G. is an m.-dimensional vector.

k  1
Each DM estimates the other's input and then formulates his own input so

* as to minimize his cost based on his estimate. The principle of certainty

" .."" k " 
',

"ia 'a...-It ie ,.,,,,h,,.n ,,,. .. . . . . .,. .,,. .i.. . . . ." .- . - .- . - .- ' " " .a"" " .' . . . ..... ." " " " " ' '' -.. r .,.- " ... '' '' .- '"" " ' " " ' ' " "
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equivalence is invoked here: The DM's replace the noise by its mean and

estimate each other's inputs and play optimally for those estimates. The

game proceeds to the next stage with the DM's repeating the procedure

above. When the DM's estimate each other's input correctly, we say they

have reached an equilibrium. It will be shown that this equilibrium is a

unique Nash equilibrium.

With assumption (2.4), DMI views the system (2.1) as

^ -(A + BmFkr +BU5

Xk+ + B2G2k + B1 k(2.5)

where X is DMI's estimate of the next state based on his estimate of
1 k+1

DM2's input

U2 k = F 2  + 2 (2.6)

The symbol ''' indicates an estimated value. DM1 sees his cost as

1 [(A+ B2 2 )Xk+B 2 2 +BIUI -C1 'Q1 [(A+ 2 )Xk +B 2 G2kFk k k k k

+BIU -C1] +U1 RUk. (2.7)

kk k

Minimization of (2.7) with respect to U yields

U1  = -(BIQIB I +R)- IBQ[(A+BF \+B 2G2 -C1 ]. (2.8)
k k k

The positive definiteness assumptions on 0 and R guarantee the existence.1

of the term involving the inverse in (2.8).

It is seen that DM1's input is a function of his estimate of DM2's

input. DM1's input can be decomposed as follows

2., , i m "u "'il -~ 'n mmm m i ,d, nnniaa ...
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F FIk (F 2k) -(BIQ 1 B 1 +R) 
1BI'O(A+BF 2 ) (2.9)

1k (G2 ) (B'Q B1 + R 
1BQ(B G C (2.10)

kkk

- ~~~Note that DM2's cost parameters Q2, R2 9n C2, hc r"nnw

to DM1, do not enter into (2.9) or (2.10). In forming his input, DM1 knows

A, B1, B2  0?19 Rip and C .Once he has obtained his estimates of Fk and
1 2

k k k k
results for U 2are also obtained:

-1-

F2 k(F ) = -(BO02BI2 + R) B oQ2 (A+ B F ) (2.11)

k ( k ) ,- , ( 2 2kC ).i

G k -(BQBI + ) BQ I  . (2.1)

2.3. A Proposed Equilibrium

Let the equilibrium be defined as when each DM's estimate of the

other's input is correct. At equilibrium we then have

F1 (F 2k ) = IF2 B G2 (  B  (2 G C
k2 k =  k 12 e k k - (2.13) -

F,)(F F F G, (G)=G =G
1 2 k k -~k k k e k k K

where F. and G. (i= 1,2) denote the equilibrium solutions. Substituting

=1 1 =G

e e(2.9)-(2.12) into (2.13) and denoting for ease of notation

I
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a, BQ1BI + R,

(2.14)

22Q2 B2 + 2

we obtain the equilibrium solutions:

F1 =(I-a 1 B IQ B a- 
1  B ,B1) 'c 1 B Q(B a- 

1 B Q 2- (2.15)

e
- , -1 , -iI Q -1

2 = (I-c 2 B2Q2 B 1 1 B1Q1 2B) a 2 B2 Q2 (B 1 1 B2Q2-I)A (2.15)
e '

-1 I -1 , -1-1 , - B1B-I 1 B)1 (2.1)

= (I-ca2 B2Q2B 1Ct1 B1Q1B2) ct2 B2Q2 (C2 -B 1a 1 BQ 1C1 ). (2.18)
e 2

(111, it is seen that the existence of

-1 - 1 -1 BaB (2.19)
(I-ct 1 B1 Q1 B2c1 2 2 22 2 1

implies the existence of

(I-a2 B2Q2Ba B BIQB2 (2.20)

Hence, the existence of the equilibrium defined by (2.13) hinges on the

existence of (2.19). Note that the equilibrium cannot be calculated by

either DM a priori since it involves the other DM's cost parameters. If the

inverse (2.19) exists, we define the equilibrium plant as the system (2.1)

with the equilibrium inputs applied.

itv.o

exis t e equilibrium plttat is qiirumcno ecacltdb

inverse I2.19) eits wedfn h eqilb ium p [ntas- esste (2.1) .

. .. *. . . . .
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U where

1 = Bi B - (2.22)

i Ba- B Qi (2.23)

YI - BrQBaB2-1 (2.24)

1 1 B 1 2 t2 BQ 2B

-2 , -i ,"
-Y = I- 2 BQ2 BI'BQIB2 . (2.25)

The steady state of this equilibrium plant is denoted X andss

*given by

Xss = [I{+l( 2-1) +i 2( I-)}A]I[ I(CI-& 2C2)+u2 (C2- ICIM. (2.26)

The steady state exists if the eigenvalues of

U {I + l (P2-I) +2(4i-) }A (2.27)

are within the unit circle.

*For the scalar system

Xk+ I  axk + bu + bu + wk  (2.28)
k k

and cost function

2 2

J. i q i(x -c ) + r u ,

k 1 1

we obtain from (2.15)-(2.18)

f -aq b rl/A

f2  -aq2b2r9 /,
5 e

.....- , -.-- , ,........
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gle = -qlb (q 2 b2 (c2-c )-c r2 )/A -

e

where A2=r q 2 +r q b2+rlr2  Since A is never zero, the equilibrium

always exists. The equilibrium plant is

2 2
Xk+ I = (ar1r2xk +qlb 1c 1r 2 +q 2 b2 C2 rl)/. -

The equilibrium plant is stable if lar 1r2 /AI < 1. Equivalently, it is stable

if

2 2

jal < + 1. (2.29)r 1  r2

If the equilibrium scalar plant is stable, the steady state is

q 2 2, qlblr 2Cl + q2b2rlc2
x -- (2.30)
ss 2 2

r b2q 2 +r 2bq 1 + rr -ar1 2

The equilibrium steady state controls, ui = f X +g i  are
e e

2
b q (b q2(c 2 -c2) + rc 2 (1-a))

ul 1 2 2 1 2.311
Iss b 2q r2 +b2 q r, + (l-a)r rr

"- bq2(b 2q 1 (c2-c ) + r c2(1-a)

u 2 2 (2.32)

ss blqlr 2 +b 2 q2r,+ (l-a)rlr2

Although the existence of the equilibrium plant is guaranteed for

the scalar case, the stability of the equilibrium system is not known

a priori to either DM unless lal <1. If aj < I then (2.29) is trivially

satisfied. We note that for rI or r, sufficiently small, or ql or q
1
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3 sufficiently large, any initially unstable plant, that is, lail > 1, will have

a stable equilibrium system. A problem posed by this fact is how the DM's

would realize the equilibrium does not yield a stable equilibrium system

and how the DM's should readjust their r's and q's in order to create a

stable equilibrium.

&W

_',

I
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3. THE NASH EQUILIBRIUM SOLUTION

In this section it is shown that if the proposed equilibrium in

(2.15)-(2.18) exists, then the equilibrium is a Nash equilibrium.

The input strategy U*= {U* U*, .,U~If is defined to be a Nash
1' 2' m

equilibrium solution if, for each mE M, where M is the set of decision

makers, J (U*),S < (m*, ) hr m*A {*,U, *- ,U* ,...,u*}. In
m m Sm) whr 2 sLm m+1 m

our case with M =2, U*-{U (U,} is a Nash equilibrium if
1' 2

J 1(U*,U*) 1 J (U1 1,U*) (3.1)

and

j (U* U*) :S J(U*,U) (3.2)
21' 2 2 12

for any U 1and U 2. We prove that the equilibrium given by (2.15)-(2.18)

is Nash by verifying (3.1) and (3.2).

Suppose that U 1and U 2is a Nash equilibrium. Then we must have
e e

J (Ulu2 ) J 1)U1+ 1l (3.3)
e e e e

and

S2 (U1 ,U 2 ) ji J(U 1 ,U 2 + 62 ) (3.4)
e e e e

for any arbitrary m 1-dimensional and m 2-dimensional vectors 6 and 62

respectively. Let

U, U +6i = -+61(35

Substituting (3.5) and (2.15)-(2.18) into (2.2) we obtain

PU2 K. + .(B'Q B~ +R )6(3.6)

See the Appendix for the expressions for K .Then
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Ji(UI ' U
2 ) = Ji(UIU 2 ) _ = K ,

e e 61=20

12J"-,,U 2 ) = J2  = K +6 (B B +RI)6

1 2 1=2 0 2 222222 1e
J U u J UUK 2 + 6'(B2Q2B2+R2 ) 6 2

2J 2 J2(U'2 ) 1= 0  2 2 2"

Since BiQiB +R. is positive definite, the inequalities (3.3) and (3.4)

are met.

The equilibrium in (2.15)-(2.18) is now known to be a Nash

equilibrium. It follows that the equilibrium is unique provided the

L inverses in (2.15)-(2.18) exist. In solving for the equilibrium we assumed

the inverses exist. If they do not exist, there are infinite solutions for

(2.13). Since we desire an algorithm to converge to the Nash solution, we

N can only consider systems which yield a unique equilibrium. As in the

scalar case, we can pose the problem of how the DM's should readjust their

*cost parameters to force a unique and stable equilibrium.

* We have shown that if a solution exists for (2.13), then the

solution is a unique Nash equilibrium. The solution to the finite

horizon, N-stage, linear-quadratic Nash game when the plant and cost

functions are known is given in [101. For the case N =1 and C. 0, wei

obtain a unique Nash equilibrium given by

-1 ' -1

Fi  = -Ri BiQi' A, (3.7)
e

-1 ' -1

if the inverse of A=I+B 1 R 1 B Q +B R2 B2Q2 exists. We have shown that
1 1 1 2 2

.. the defined equilibrium also exists given the existence of a specific

matrix. We have attempted to verify algebraically that (3.7) is equivalent

to (2.15) and (2.16). Various matrix identities were tried and the symbolic
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processor REDUCE [12] was used. Even for the second-order system we were

not able to prove equality for the general case. However, when numerical

examples were examined, (2.15) and (2.16) yield the same results as (3.7).

It is believed that with clever manipulation of (2.15) and (2.16) we

could obtain (3.7).

At this point we justify estimating the other DM's F and G rather

than his Q, R, and C. First, we estimate fewer parameters. In estimating

F and G, DMi estimates mix(n+l) parameters; in estimating Q, R, and C, DMi

2 2
estimates n +m +m parameters. Second, in the expression for the equi-

i i

librium feedback U = Fe X+Ge, F and G are unique. The correspondinge e e e

3-tuple (Q,R,C) which generates the equilibrium feedback is, in general, not

unique.
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4. CONVERGENCE OF ALGORITHMS

We have seen that the equilibrium (2.13) leads to a unique Nash

equilibrium solution. In this section we examine the possibility of an

algorithm converging to a value different than the desired equilibrium.

It will be shown that it is not possible for the DM's to follow an equilibrium

trajectory while incorrectly estimating each other's control input. This

point is important for algorithms which update the estimates F and 6 based

on the error in the estimate of the next state.

1 4.1. The Error Equations

Consider the scalar case of (2.1)

Xk+1 axk + + 2 2 (4.1)
k 'k

In this development we assume the noise to be zero, because the probability

of the DM's estimating the next state correctly when the system is driven

by Gaussian noise is zero.

DM1 sees (4.1) as

x 1 axk + 1+ 2 2 (4.2)
k+ 1  k k

and DM2 sees the system as

X1 ax + b +b2U1
1"k+1 k -

At stage k the DM's apply their inputs uk and estimate the next state k+"

-" At stage k+1, the DM's are given the state Xk+1 . Each DM then formulates

Ik.1



16

his error which is the difference between the state Xk+1 and the estimate

x. :

k+I

e Xk+1 Xk+1- x 1  (4.4)k+k+

e xk+ . (4.5)
k+1 k+1

Substituting (4.1)-(4.3) into (4.4) and (4.5) we have

e b2 (u2k -  k  (4.6)
k+1 k k

e2k+= bl (u1k  1 k (4.7)

It is clear that, by definition, if the DM's play the equilibrium inputs

(2.15)-(2.18), the errors (4.6) and (4.7) are zero. We intend to show that

a necessary and sufficient condition for the errors in the estimates to be

zero, and remain zero, is the inputs to (4.1) are the equilibrium inputs.

We consider update laws of the form f. =f. +¢(e. ) and g. --gi+(e. )
'k+1 k 'k+1 k k

where D and e are functions such that (0) = 8(0) = 0. This proposition is

proved in the following two sections.

4.2. The Moving State Case "

Clearly, if one of the errors is not zero, then the corresponding

DM has incorrectly estimated the other's input. Suppose the errors are

both zero and b and b are not zero. We have VA

1 2

. ..

'. • - - . ' - % ' ' - ' -° - . .. . . o . ° - - . . " . .- . . . ." ° - " , , ' , .% % ' °° . -. ' '.- - o . .. °° •% " ° • ° o
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ek1 2  U f2  X+g - (02 xg+ --2 0 (4.8)
Sk+ k k k k k k

e2 = -Ul = fl xk+gl -(flx k+glk) = 0 (4.9)
2k+l k 1 k k 1k k k 1 k

-which implies

f 2 kxk + g = 2 xk + (4.10)k 2k fkk g k

f 1kxk +  f=lkXk + (4.11)k gkk gk-

From (4.10) and (4.11), if f=f.I (i1- or 2) then gigi, and if gi--gi

then f.= f., provided xk#0. If this is true for both DM's then, by1 1

definition, the DM's are playing the equilibrium inputs. Suppose this is

not true for i = 2. (A similar argument holds for i= 1.) Since the estima-

tion errors (4.6) and (4.7) are both zero, the DM's do not update their

estimates of f and g for the next input. This implies the inputs given by

(2.9)-(2.12) remain the same. The errors of stage k+2 are

I k b 2 (f 2 k+Xk+ 1+ 2k+ - (62 k+Xk+l+2 k+)) = b2 (f 2 Xk+lg 2 k

-(f 2kXk+ 2 ) (4.12)
k 1

e k2 b b1 (flkI 'k+l+glk -(flk1iXk+l+glk~) 'al (flk Xk+l+glk

k+2 k+1 k+1 k+1 k+l k k

(f kl ) (4.13)
1f lkk+ 1 1 k

We now investigate whether the errors (4.12) and (4.13) can again

be both zero if DM1 is not estimating DM2's control correctly. Let

f2 t + g2  (4.14)

t k k

Y2  -f 2 kx + g , (4.15)
2t 2k t k

....... ... . .'- . . . .. ..'u - . - . " . . ' : . . - - , ' " - - -- : •• .. ' ' .
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tE {k,k+l}, and assume f2 k# f2k and g2 kg9. A plot of the linear equations

(4.14) and (4.15) given in Figure I illustrates the results. Clearly, if

Xk+ 1 # xk then yl +1  Y2k+l and an error is generated. From the above we
k+1l +

know that if there is an error in estimating the next state then the equi-

librium inputs are not being applied. Although DMI was able to estimate

the state at k+l correctly while not using the correct f2  and g2 , this

fault is revealed at stage k+2 if 'k+1 0x k . We see it is possible for

both players to estimate the next state correctly even though one DM may not

be playing the equilibrium input. However, if the state changes at the

next stage,the error surfaces.

4.3. The Constant State Case

We now consider the case when the state remains constant, Xk+l =xk.

The errors (4.12) and (4.13) reduce to (4.8) and (4.9) which are zero.

By simple mathematical induction we see that the state will remain constant

for all future stages, the errors will remain zero, and therefore, there

will be no updating of the controls. DMI will continue to apply the wrong

f? and g, but he will have no error in his prediction of the next state.

Let us reconcile this difficulty by examining the properties of the constant,

or steady state xk. To be more general, let us not require DM2 to estimate

and gk correctly either."k 1k

.-.
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We have

f 2 kXk +g 2 k- (f 2 kxk+g 2 ) = 0

k k k k

k k k k

ax + bl(flkxk+glk) + b2 (f 2 xk+g 2 k ) Xk
'k1 k 11kx lk 22k k k k

withf I g 9 f9 , g2  given by (2.9)-(2.12), respectively, yielding

I -qlbl(a+bfkl -q b2(a+blf ) /l-qlbl(b gik-Cl
1  2---- 2 2 r b1q k

Ta+b I +rb ( 2 2 xk + b Ir(
+ b2- - -- . ).. + b1(2+r

+ b2 b 2 0. (4.16)

-c' " (a+b ) -q 2 b2 (blgl-c
~2 1 1k 2211k2

2 Xk + 2 - (f2 kxk+g 2  0 (4.17)

b2 q 2  b 2 q2 +r 2  k

-qIb I(a+b 2 f2 ) -qlb 1 (b 2 g 2 -cI)

2 Xk + 2 - Ikxk +gl) = 0. (4.18)

bq I + r I  b1q 1 + r k k

We have three equations in five variables: xk , flk9 f2k9 glk9 g2k It

appears we have two degrees of freedom and so let us fix xk and fl to any -

k

arbitrary values and solve the remaining system. (Similar results hold if

we fix f , , or .)
2 k9Ik9 2k
2k Ik gk

Solving (4.18) for g we obtain
Ik

-1 2(b 2 _C )-

2- [(qlbl(a+b 2f, )+(blq1 +r )f )xk+ql
b  ] (4.19)MIk blq2 +r 1  1 k I 1I1 -k k 1

Substituting (4.19) into (4.17) and solving for g? gives
-k .

. N .-".."- .- ,.. ...."-",.-. .-. .---,,.. ..-. ..-..--..- -.----. ...,.". ." -. "" ". . . ..". .- ". . ." " " + .
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9 ̂ = -12 2 [Wlx,k +W 2] (4.20)
~k  rIr 2 +r 1 b2q2 + r2blq1

" where

2 2 2 2W 1 I ab2 q 2(blql+r I)-q 1q 2 bIb 2(a+b 2f 2k) +(b 1q I+r1) (b 2 q2+r 2)f f2k

2

2  bbc qq 2b1b 2 q2b2c2 (bIql+r 1).

Note that in (4.20) k has no dependence on f Finally, substituting• gk f k "

(4.19) and (4.20) into (4.16) we obtain

2 2L Xk = ~qlblr2Cl + q2b2rlc 2  (.1
X k - 1 221 222 2 (4.21)

rlq 2b2 +r 2qlb 1 +rr 2 - ar r2

Note that the variable we were solving for, f2 , drops out and does not

3 appear in (4.21). In its place we have a requirement for the arbitrarily

chosen xk . If the state is not at (4.21), then the system of equations

(4.16)-(4.18) is inconsistent. For a solution, or a set of solutions to

* exist, we must have the constant state at (4.21). We recognize this require-

ment as the steady state (2.30) of the equilibrium scalar plant. The DM's

may estimate each other's control incorrectly with no error, and continue

to have no error in estimating the next state only if the next state remains

at the equilibrium steady state.

Substituting the steady state into the equations (4.16)-(4.18) and

denoting the results as the steady state controls, we obtain

-(q r 2cI(flkbIcl- + I-abI) +bIb2qlq 2(c1 -c2) f I b2 q)r1c2)

2 2 k(4.22)
ss b q r2 +b 2q2r +rr 2 -arlr 2

............ ....-. -.. ........ .
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2 blqlr 2 +b 2q2r I +rlr 2 - arlr 2

that g is a function of f1 but not of 2 and g2  is a function
ss

of f but not of f For the original system of equations to be consistent,

this separation of estimation parameters must occur. We solve for each DM's

estimate of the other's control, ui = f.x +g. from (4.21)-(4.23):
ss ss

k'. 2
bq 1(b2q2 (c-c 2) +r 2c1 (1-a))

ul 2 2 (4.24)
ss blqlr 2 +b 2q2r1 + r2-ar 1 r2

2
b2q2 (b1qI(c2-cI) +rIc2 (1-a))(.

u2 2 2 (4.25)2 ss blqlr + 2q r,+ rlr -ar r
1q1r2+ 2q 2r 1  2 1 2

We observe that even though fl and f can be chosen arbitrarily, the
1k 2k

resulting estimates of the steady state inputs are constants and equal to

the equilibrium inputs (2.31) and (2.32). For the state to remain at the

true equilibrium, the DM's must estimate that the other is playing the

equilibrium input. This in turn causes the DM to play his owm true

equilibrium. Since the DM's are using the equilibrium inputs, they are not .

penalized for incorrectly estimating f and g.

In summary, we see that if a DM estimates the next state incorrectly,

then an error has been made in estimating the input parameters. If the DM's

estimate the next state correctly and continue to estimate the next state

correctly, then the inputs u have been estimated correctly. If the state is

changing and the DM's estimate the inputs correctly, then they have also

estimated the parameters f and g correctly. If the state is not changing
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and the DM's estimate the inputs u correctly, then the state is at the

steady state (2.30). At the steady state the dynamics of the system are

lost. In this case, the DM's do not have to estimate the input parameters

-correctly when minimizing their costs.

The simple example given below demonstrates the steady state

situation. Consider the system

xk+1 axk 2 b,1 + b2U2
k k

2 2
1 qlx2 +rlU
1k 12 11k

2 2
J2k q2xk + r2u 2k

with the control laws

U f

U 1k
U2k =2 xk-

k k

An obvious solution for mirnimizing the cost functions is xk -0 and u 0.
ik

At the steady state, x =0, each D1 estimates the other's input will be

zero and applies his input ui 0. The DM's do not have to estimate the

equilibrium fk 's; for any fk their corresponding input will be the correct

value, u=-0.

4.4. The Vector Case

We now briefly examine the convergence of algorithms for the general

* vector problem. Following the development of Sections 4.1 and 4.2, we

obtain

1.
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E = k+i B 2(U2 - 2 (4.26)
k+1 k+1 k k

E = B1 1U ). (4.27)
2k+1 X+I- 2k+1 1 k lk 1'.

The errors can be zero if the difference U. -U is zero or if the difference

is in the nullspace of B i * To eliminate the latter possibility,we now

require B and B2 to have full column rank. This requirement is not too

restrictive; it is equivalent to having no redundant control. With this

requirement the errors are zero if

(F2k-F2k)4X + (G2 -G2 ) 0

and
(F k-F1 k) + (G1 k-Gl) = 0.

We conjecture results for convergence, similar to those obtained for the

scalar, case could be obtained. The matrix algebra required to justify our

conjecture may be formidable. We realize there may be a possibility of

converging to incorrect values if G. -C. lands in the range space of

Fk -Fik but we believe this is unlikely.
k k

a

-. 4

.................................... 'V.--

SW:*
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5. A PROPOSED ALGORITHM

In this section an algorithm is proposed for determining the Nash

equilibrium from the reaction relations of the decision makers. Several

gradient-type algorithms are available for estimating unknown parameters

[13],[14]. Convergence of these schemes has been shown for the single input

case. We maintain the spirit of these algorithms and extend them to systems

with multiple users.

We assume a decision maker can remember his previous L inputs, his

previous L estimates of the other's inputs, and the previous L states. The

number L is a finite memory buffer size whose value depends on the order of

the system. For the noiseless case, DM1 can solve (4.26) for DM2's previous

input U2. Knowing X and U2k is not enough to determine F2k and G2k'

However, if F2 and G2 are not changing rapidly, DM1 can consider them to

be constant over the last L stages. DM1 can then use a least-squares scheme
for determinng the best estimate of DMI's input parameters F2 and G2 We

k k
denote these estimates as F and G Now DM1 can use the following updating

scheme:

F k+ I 2 ^2 ) (5.1)

F2 F2 + ( 2 _F2

k+1 k - k k

G 2k+l G G2k+ (2k 2k (5.2)

If F =F then a simple interpretation of the updating scheme is: DMI's
2 2k k

next choice of F2 is the average of his last estimate and DM2's actual last

input. We note the scheme in (5.1) and (5.2) has the desirable property of

not updating when there is no error in estimating the previous input.

.' .. . . . . -. .. . -... .- • . . . . . . . - -. . . . . . . ... . .
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The algorithm is initialized with the assumption that the decision

makers have similar costs and objectives. DM1's first estimates F andG
0 0

are found by replacing DM2's unknown cost parameters QR, and C2 with

DM1's parameters Q,, RV, and C DM2 does likewise.

As noted above, convergence for the stochastic gradient algorithms

has been proven for the single user case. We have not shown they converge

for the multiple user case. However, from our results of Section 4, if the

proposed algorithm converges, it must converge to the correct values.

. . .. ...
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6. A WORKING EXAMPLE

Consider the system

SXk+1( ) :Ulk ( U2k + Wk ,  Xo -

with cost functions

Xk (k

Wk is a diagonal matrix whose entries are from a zero mean, unit variance,

Gaussian distribution. The noise level is scaled with the factor a.

The matrix (25) is not stable because it has an eigenvalue in

. the left half plane, and so control is required to stabilize the plant.

In this example the DM's know the other's Q and R but do not know

the other's target vector C. The DM's can calculate a priori the equilibrium

- F's, but must estimate each other's G vector.

Solving (2.15)-(2.18) and (2.21) for the example above, we obtain

0.055 -0.158] F [-0.518 0.0191

e Le0.061 -0.274 e -0.308 -0.278

= 0.24 9] G = 2.384]
G1 e .543- 2 e [4.5451

. x.. 9.711
ss -2..880 i
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The following figures show results of simulations with systems

having no noise, a=O0, and systems having noise, oF=0.1. The figures

display the actual state and its estimates X 1adX 2 P and the controls G

and Gand their estimates Gand G2  Since the state and the control G.
2 2' 1

are two-dimensional vectors, we display the components of these vectors one

at a time. We use the following notation to indicate the components:

g1  L 1 g21

= [2u g 1

L912j L922j

The results of simulations with c =0 are given in Figures 2-7.

In Figures 2 and 3 we see how the estimates X converge to the actual
i k

state Xk. We also note that the state converges to the true steady state

value. Figures 4-7 show the estimates a. converging to the inputs G.

We also see that the inputs G converge to the equilibrium values Gi

The results of simulations with j=O0.1 are given in Figures 8-15.

Figures 8-11 show the state and its estimates and Figures 12-15 show the

control and its estimates. The effect of the noise is evident in the

plots of the actual state. The estimates of the state do not fluctuate as

much as the actual state, because the actual state is driven by the noise.

'We again note that the estimates go to their equilibrium values. We
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n observe from Figures 12-15 that the noise affects the estimates G more
ik

severely than the actual controls G k. The controls tend to their equili-

brium values, but the estimates vary about the true control.

-The estimates are more sensitive to noise than the actual inputs

because the estimates are driven directly by the noise. A DM bases his

estimates on his calculation of the other's previous input. In the noise-

less case, he can determine the other DM's previous input exactly; however,

when there is noise the measurement is corrupted, and he can only estimate

the previous control. The functions (2.9)-(2.12) which determine the

actual control act as a filter for the noisy estimates.

I,

r

ii
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7. CONCLUSION

A simple method for determining the Nash equilibrium from the

reaction relations of the decision makers has been presented.

An equilibrium was proposed and shown to be equivalent to the

Nash equilibrium. The class of algorithms, which update based upon the

error in the estimated state, was considered and it was proven that these

algorithms could not converge to an incorrect value. A sample from this

class was described and an example worked.

This work leaves open many areas for future work in the study of

Nash games. For example, algorithms which have better convergence properties

can be studied. Also, problems with different information structures

should be investigated.

.:A

, o
J

...................................
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3 APPENDIX

PROOF OF NASH EQUILIBRIUM -THE CONSTANT K.

The constant K.i is given by the following expression:

K1  X. A QiAXk- 2X A Q1 C, + C!Q.C 1 + 2X..A'QB 1 (F1 k+G,e e

+ 2X.'A'Q 1B 2(F 2 Xk+ G2 ) + (F I X.k+G 1 )'BQ.BI(F1 X.k+G,
e e e e e e

+ (F2 Xk+G 2 )IIQiB (F2 Xk+G 2
e e e e

+ 2(F, Xk +Gj )'Q B (F2 Xk+ G2
e e 1122e 2e

+ (F, X.k+ G, ) IR (F, X.k+ G, 2CjQ.B1 (F, Xk + G,
e e e e e e

-2C!Q1 B (F2 Xk + G2
1' e 2e
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